Pathways of adipose tissue androgen metabolism in women: depot differences and modulation by adipogenesis.
نویسندگان
چکیده
The objective was to examine pathways of androgen metabolism in abdominal adipose tissue in women. Abdominal subcutaneous (SC) and omental (OM) adipose tissue samples were surgically obtained in women. Total RNA was isolated from whole adipose tissue samples and from primary preadipocyte cultures before and after induction of differentiation. Expression levels of several steroid-converting enzyme transcripts were examined by real-time RT-PCR. Androgen conversion rates were also measured. We found higher expression levels in SC compared with OM adipose tissue for type 1 3beta-hydroxysteroid dehydrogenase (3beta-HSD-1; P < 0.05), for aldo-keto reductase 1C3 (AKR1C3; P < 0.0001), for AKR1C2 (P < 0.0001), and for the androgen receptor (P < 0.0001). 17beta-HSD-2 mRNA levels were lower in SC adipose tissue (P < 0.05). Induction of adipocyte differentiation led to significantly increased expression levels in SC cultures for AKR1C3 (4.7-fold, P < 0.01), 11-cis-retinol dehydrogenase (6.9-fold, P < 0.02), AKR1C2 (5.6-fold, P < 0.004), P-450 aromatase (5.7-fold, P < 0.02), steroid sulfatase (3.1-fold, P < 0.02), estrogen receptor-beta (11.8-fold, P < 0.01), and the androgen receptor (4.0-fold, P < 0.0005). Generally similar but nonsignificant trends were obtained in OM cultures. DHT inactivation rates increased with differentiation, this effect being mediated by dexamethasone alone, through a glucocorticoid receptor-dependent mechanism. In conclusion, higher mRNA levels of enzymes synthesizing and inactivating androgens are found in differentiated adipocytes, consistent with higher androgen-processing rates in these cells. Glucocorticoid-induced androgen inactivation may locally modulate the exposure of adipose cells to active androgens.
منابع مشابه
Glucocorticoid-induced androgen inactivation by aldo-keto reductase 1C2 promotes adipogenesis in human preadipocytes.
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures we...
متن کاملExpression of Genes Related to Prostaglandin Synthesis or Signaling in Human Subcutaneous and Omental Adipose Tissue: Depot Differences and Modulation by Adipogenesis
OBJECTIVES (1) To examine depot-specific PGE2 and PGF2α release and mRNA expression of enzymes or receptors involved in PG synthesis or signaling in human adipose tissues; (2) to identify changes in expression of these transcripts through preadipocyte differentiation; and (3) to examine associations between adipose tissue mRNA expression of these transcripts and adiposity measurements. METHOD...
متن کاملDepot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women
Glucocorticoids promote fat accumulation in visceral compared to subcutaneous depots, but the molecular mechanisms involved remain poorly understood. To identify long-term changes in gene expression that are differentially sensitive or responsive to glucocorticoids in these depots, paired samples of human omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues obtained from obese women ...
متن کاملDifferences in In Vivo Cellular Kinetics in Abdominal and Femoral Subcutaneous Adipose Tissue in Women
The accumulation of fat in upper-body (abdominal) adipose tissue is associated with obesity-related cardiometabolic diseases, whereas lower-body (gluteal and femoral) fat may be protective. Studies suggest physiological and molecular differences between adipose depots and depot-specific cellular mechanisms of adipose expansion. We assessed in vivo cellular kinetics in subcutaneous adipose tissu...
متن کاملStudies on receptors and actions of steroid hormones in adipose tissue Implications for fat distribution
Adipose tissue distribution is different between women and men. Therefore, we have investigated the expression of steroid receptors in human adipose tissue and report that receptors for glucocorticoid androgen and estrogen are present in human adipose tissue. Furthermore, we discovered regional differences in expression pattern, indicating that steroid hormones might affect the different adipos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009